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Electoral violence is conceived of as violence that occurs contemporaneously with
elections, and as violence that would not have occurred in the absence of an

election. While measuring the temporal aspect of this phenomenon is straightforward,
measuring whether occurrences of violence are truly related to elections is more
difficult. Using machine learning, we measure electoral violence across three elections
using disaggregated reporting in social media. We demonstrate that our methodology
is more than thirty percent more accurate in measuring electoral violence than
previously utilized models. Additionally, we show that our measures of electoral
violence conform to theoretical expectations of this conflict more so than those that
exist in event datasets commonly utilized to measure electoral violence including
ACLED, ICEWS, and SCAD. Finally, we demonstrate the validity of our data by
developing a qualitative coding ontology.
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Elections are the most common means by which citizens select and provide legitimacy

to their political leaders. Despite intense pressure by the international community to

utilize elections as a means to promote stability, electoral politics has become intertwined

with violence across much of the developing world (Dunning 2011). Research into the

causes of electoral violence has become more systematic, examining the conditions under

which incumbents are likely to use violence to influence the electoral process (Hafner-

Burton, Hyde, and Jablonski 2014), the effects of majoritarian electoral institutions on

electoral violence (Fjelde and Höglund 2016), and the conditions under which ethnic

diversity contributes to such conflict (Butcher and Goldsmith 2017).

Despite the increased interest in electoral violence, the concept remains theoretically

underdeveloped and conceptually vague (Staniland 2014). Inherent in most definitions of

electoral violence is the temporal link between violence and elections and the causal link

between the two. Electoral violence is conventionally understood as violence that takes

place contemporaneously with the electoral cycle. The causal link, which is often more

implicit, limits electoral violence to that which is in some way connected to the electoral

process, as opposed to violence that takes place during the electoral process but has no

direct bearing on the election. We follow Birch and Muchlinski (2017, 3) who define

electoral violence as, “coercive force, directed towards electoral actors and/or objects, that

occurs in the context of electoral competition”.

Electoral violence is often conceptualized at quite high levels of aggregation utilizing

blunt categories including whether there were post-election protests, whether “civilians

were killed in significant numbers” in the months surrounding the election, and whether

government forces harassed opposition candidates (Hyde and Marinov 2012). Most studies

of electoral violence tacitly assume that violence which occurs contemporaneously with

an election is also related to the election, but there are legitimate reasons to think this



We Need to Go Deeper 3

may not be so. Commonly utilized datasets on this phenomenon are hand coded from

official reports released by the United States Department of State or other international

organizations. Conceptual ambiguity can easily creep into published measures as coders

impose their own subjective biases into the data generating process (Brass 1997). While

no recorded measure of electoral violence is free from measurement error, the fact that

many measures of this concept rely heavily on the timing of violence to justify its coding

leaves substantial uncertainty regarding whether such violence would still have occurred

in the absence of any election.

Other studies (Daxecker 2012, 2014; Goldsmith 2015) have used disaggregated event

datasets like ACLED (Raleigh et al. 2010), ICEWS (Boschee et al. 2015) and SCAD

(Salehyan et al. 2012) to develop measures of electoral violence. Because they utilize

event-based datasets, these studies may be able to more accurately assess the relationship

between violence and elections by including only, for instance, violence between opposition

and incumbent parties. It has been established, however, that these datasets which rely on

major international news media reports to collect data relevant to political violence tend to

under estimate the true number of violent events, introducing another possible source of

bias into measures of electoral violence (Cook et al. 2017; Hendrix and Salehyan 2015;

Weidmann 2015, 2016). Because reporting agencies may lack the necessary resources to

send reporters into far-flung rural areas to document instances of conflict, events which

have occurred may not be recorded (Earl et al. 2004). Further, major stories likely to be

included in these datasets are subject to the “if it bleeds it leads” problem and violent

events that do not result in deaths often go unreported (Zeitzoff 2011).

We propose utilizing an alternative source of data to develop conceptually clear

measurements of electoral violence. Social media platforms such as Twitter catalog reports

on political violence, and these data have previously been used to predict violent events,
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including political instability (Ramakrishnan et al. 2014). Compared to traditional news

reports, Twitter reports on major news events equally well, but contains a longer tail of

minor events often not covered by traditional print media sources (Jackoway, Samet, and

Sankaranarayanan 2011; Petrovic et al. 2013). This study joins a growing field of research

using social media to document conflict dynamics (Doyle et al. 2014; Steinert-Threlkeld

et al. 2015; Ramakrishnan et al. 2014). Most research using social media to estimate

political violence has focused on large-scale, high-intensity violence like civil unrest and

violent protest, but no attempt has been made to estimate occurrences of electoral violence

using social media.

Our contributions are twofold. Methodologically, we introduce a way to more

accurately estimate the link between the electoral process and electoral violence. To our

knowledge, this is among the first projects in political science to utilize a convolutional

neural network to estimate a form of political violence directly from unstructured social

media text. While we chose to estimate electoral violence, our method is general and

can be applied to estimate any politically relevant concept using any source of text from

social to mainstream print media. Substantively, we demonstrate that the combination of

social media data and our machine learning platform develops more accurate estimates

of electoral violence than those that currently exist in available datasets. This is due to

the superior classification ability of our convolutional neural network compared to other

algorithms previously utilized for the analysis of text as data, as well will demonstrate.

Scholars who adopt our methodology to measure electoral violence will thus be able to

draw more statistically valid correlations between such violence and variables theorized to

bring about its occurrence. This is important for advancing not only scholarly knowledge

about this destructive form of conflict, but can also assist policy makers to forecast this

violence and develop policies to ameliorate its effects.
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We want to make clear at the outset that we are aware of the possible problems inherent

in utilizing social media as a source of data to measure instances of possible violence

around elections. We are well aware that not all events reported by social media may

have actually occurred. Therefore, we corroborate our estimates of electoral violence

using local print media sources. We also examine the external and concept validity of our

estimates by measuring the temporal trends of violence reported across elections against

other established datasets. To be sure our data are truly related to the elections under

study, we qualitatively code events discovered by the neural network and existing datasets,

and compare these results. Finally, we provide in the supplementary materials tables

and datasets documenting each event discovered by our methodology. We are also aware

that our data collection and analysis pipeline depends heavily on individual access to the

Internet and social media. This access is geographically uneven, and is often subject to

government censorship in authoritarian regimes (e.g. China). While the methodology

proposed here may not be applicable to all elections worldwide, when it can be utilized it

is able to estimate electoral violence with a level of detail which is unmatched in current

datasets.

This article is structured in the following way. The next section argues existing sources

of data measuring electoral violence do a good job measuring the temporal link between

elections and violence, but the causal link between the two remains ambiguous. We argue

that social media offers a useful alternative source of data to establish this relationship.

The next section introduces word embeddings as our natural language processing model as

well as our convolutional neural network classifier. The results section discusses how our

method of detecting events in text enhances estimation of electoral violence compared to

other previously utilized text analysis and machine learning methods. We also qualitatively

demonstrate that our machine learning pipeline is vastly more accurate than existing
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datasets in assessing the relationship between electoral violence and the electoral process.

We conclude with some remarks about the use of social media to estimate political violence

and the use of neural networks for the collection of this data.

Estimating Electoral Violence from Social Media

Using textual sources of data to develop estimates of political violence using automated

methods is not a new endeavor. Datasets including Phoenix and ICEWS are created by

fully automated systems built to search for and record specific events in newswire reports

(Boschee et al. 2015; Schrodt, Beieler, and Idris 2014). Nor is utilizing social media data

a foreign concept to scholars of political violence. Zeitzoff (2011) collected social media

data from Twitter to analyze temporal violent dynamics between Israel and Hamas during

the 2008-2009 Gaza conflict, and Ramakrishnan et al. (2014) used social media data to

forecast civil unrest across multiple countries.

Thanks to these automated methods and massive sources of textual data, scholars of

political violence now have access to massive datasets measuring political cooperation

and conflict. It is hard to overstate the impact this new form of data has had on the

field. With automated text analysis methods, datasets can now be compiled more quickly

with high degrees of accuracy (Schrodt and Van Brackle 2013). It is the size of these

new datasets, with millions of observations coded from international media outlets and

spanning decades, that has allowed scholars to understand the minute details of political

violence that previous data were unable to distinguish. As the collection and use of this

text-as-data has proceeded, however, its limitations have become clearer.

Datasets constructed by automated methods may be systematically under counting the

true number of violent events (Cook et al. 2017; Hendrix and Salehyan 2015; Weidmann
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2015, 2016). Media organizations face resource constraints and cannot be everywhere at

once. Much political violence occurs where these organizations lack established bureaus

to report these events (Earl et al. 2004). Perpetrators of political violence also go to some

lengths to obfuscate their use of violence to make sure they do not leave a record of their

activity (Zeitzoff 2011). Finally, reports on political violence are subject to the “if it bleeds,

it leads” bias, where violent events that result in multiple casualties are more likely to be

reported, leaving many violent, but not deadly, events to go unreported. This is especially

likely to affect estimates of electoral violence as such violence does not often rise to a

level which will draw international media attention. Electoral violence can include local

protests, sporadic clashes between partisans, destruction of voting material or polling

stations, and other events which may not directly endanger the lives of citizens.

Other datasets utilize reports by international organizations to develop broad measures

of electoral violence (Hyde and Marinov 2012). These datasets have also done much

to improve our knowledge, but the broad categories with which they measure electoral

violence often obscure the identity of the perpetrators and victims and the tactics employed,

misrepresent the nature of the event itself, or otherwise provide measures of this violence

at quite high levels of generality and aggregation (Staniland 2014). It can be difficult

to determine whether a violent event was related to an election because reports used to

generate this data generally do not report on each violent event that occurred, but rather

describe elections as “generally peaceful”, or “not peaceful”. As a result, most datasets

that measure electoral violence, though they posit a causal relationship between violence

around the election and the electoral contest itself assume this relationship rather than

making it explicit.

This is problematic. While electoral violence is indeed a broad category of violence

perpetrated by many different actors with a diversity of motivations (Staniland 2014), it
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is unknown to what extent current data on these events are actually electoral in nature.

Under reporting of this violence is also another unanswered question. While it is possible

to utilize methods to uncover more empirically accurate distributions of political violence

from text (Cook et al. 2017), these methods do not provide for us any information about

these other events, including whether they were related to the election.

We propose a solution to these problems by utilizing a different source of data entirely:

social media. Social media networks facilitate collective action for political activity

(Larson et al. 2016). Given the ability of social media to facilitate collective action, the

digital footprints left by individuals involved in these activities provide researchers with

relevant data that can be used to discover the relationship of an event to the election

(Schrodt, Yonamine, and Bagozzi 2013). Social media can also assist in fleshing out

the obscure details of electoral violence where power asymmetries force combatants to

utilize nontraditional means of violence which may go unreported by traditional news

organizations (Zeitzoff 2011).

Given the massive amount of content contained in textual data, automated document

classification has become a popular method of coding information due to its inherent

efficiency and flexibility (Grimmer and Stewart 2013). Automated methods code massive

amounts of information regarding political violence, including outbreaks of civil and

international conflict (D‘Orazio et al. 2014), and have identified perpetrators of mass

atrocities (Bagozzi and Koren 2017). A growing literature demonstrates that machine

learning algorithms, like neural networks, can achieve accuracy beyond that of previously

utilized textual analysis methods, like parsers (Beieler 2016; Lin et al. 2016). Can these

new methods assist researchers to discover and accurately measure electoral violence?

We hypothesize the accurate estimation of electoral violence will be enhanced by

utilizing social media and neural networks for two reasons. First, because most event



We Need to Go Deeper 9

datasets were not created to measure electoral violence, we expect these datasets to

under estimate this violence. Second, convolutional neural networks have produced

state-of-the-art results in many computational linguistics tasks, out-performing other

commonly utilized machine learning methods (Goldberg 2016). We argue the combination

of disaggregated reporting using social media and advances in computational linguistics

will allow scholars to more accurately estimate the occurrence of electoral violence. With

more accurate discovery of these events, better statistical models can be constructed to

inform scholars of the mechanisms underlying such violence and its impacts on society.

Data Collection and Preprocessing

Collection of Tweet-Level Datasets

We use the publicly available Twitter Streaming API to collect Twitter posts related to

electoral violence. We collected these tweets from a two-month period around elections in

three countries: Venezuela in 2015, Ghana in 2016, and the Philippines in 2016. We chose

these countries because they have some of the largest levels of social media penetration in

their respective regions1. While tweets collected from the Philippines and Ghana were

almost exclusively written in English, tweets from Venezuela were in Spanish2. We chose

1For instance, Venezuela’s social media penetration (the percentage of
Internet users who use social media) is 68%, the Philippine’s social me-
dia penetration is 37% and Ghana’s social media penetration is 40%
https://www.statista.com/statistics/754520/venezuela-penetration-social-networks/
https://cliqafrica.com/wp-content/uploads/2017/01/2016-Final-Ghana-Social-Media-
Rankings-Report-CliQAfrica-Ltd.pdf https://www.statista.com/statistics/490378/mobile-
messaging-user-reach-philippines/, accessed May 14, 2018)

2For the purposes of coding the training data, Spanish tweets were automatically
translated into English. Quality of the automatic translations were checked by two Spanish
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the two-month window in order to analyze trends in both pre and post-electoral violence, a

choice commonly made in the literature on electoral violence (Hafner-Burton, Hyde, and

Jablonski 2014; Hyde and Marinov 2012). While any temporal choice to aggregate the

data will be somewhat arbitrary (Daxecker 2014), we believe two months is a long enough

time frame during which to gather a large number of tweets regarding possible electoral

violence while ensuring a majority of tweets collected will be connected to the election.

We utilized a keyword search for tweets related to the election and electoral violence.

A table with the keywords utilized in our search is given in the supplementary materials.

Because the size of the tweet-based datasets resulting from this keyword search are very

large, we used a computerized platform to select a random sample of tweets from each

country and manually code them. Each author coded the same random sample of tweets

using this electronic platform, and a report of inter-coder reliability is provided in the

supplementary materials. In total, our Venezuela election training data consists of a

random sample of 5,747 Spanish tweets. The Philippine training data consisted of a random

sample of 4,163 English tweets. The training data for the election in Ghana consisted

of 3,235 English tweets. A table with the statistics of these samples is provided in the

supplementary materials. Tweets were hand-coded according to a two-tier classification

scheme. First, a tweet was coded as election related or not election related. Then, out

of those tweets that were coded as related to the election, a tweet was further coded as

referencing violence or not. Thus, all tweets that were coded as violent were coded as

violent with respect to the election. This two tired ontology ensured that all tweets labeled

as violent referenced electoral violence rather than other forms of violence that were

not related to the election. This hand coded data was used to train the convolutional

speakers, one author who is fluent in Spanish, and another native speaker.
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neural network, which is described in greater detail later. To collect tweets, we adopt an

informational retrieval and pooling methodology (Voorhees and Harman 2005) as shown

in Figure 1.

The keyword search of Twitter collected a large number of tweets each day. In order

to manually code the tweets, we used a search and pooling methodology to identify a

reduced set that were mostly likely to be concerned with electoral malpractice or violence

for each day. In particular, we used the Terrier information retrieval platform (Macdonald

et al. 2012; Ounis et al. 2006) to rank tweets that well match a set of electoral violence

related search terms3. In particular, we configured Terrier to rank tweets using the

DFReeKLIM weighting model (Amati et al. 2011), which is specifically designed for the

analysis of text-sparse Twitter data. Indeed, the DFReeKLIM weighting model accounts

for the very short nature of tweets when measuring the extent they match the search

terms. In this way we constructed three training datasets collected from each of the three

countries. We did this for each election so that there is one training dataset of tweets for

the Venezuela election, one for the Ghanaian election, and one for the Philippine election.

While our word embedding natural language processing model allows for multilingual

data sources, we assume that there may be systematic differences in the ways in which

people tweeted about elections in each country, therefore the neural network was trained

separately for each election4.

3Terrier is available from http://terrier.org. We used version 4.1, but any more recent
version would also be suitable.

4Using convolutional neural networks trained on tweets from one election to classify
tweets from another election has been studied and generalized by transfer learning.
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Figure 1. The information retrieval and pooling methodology used to generate tweet-based datasets.

Data Preprocessing using Word Embeddings

Once the training datasets were collected over the two-month period for each election and

hand coded, they were preprocessed to remove stopwords and capitalization and stemmed

using the English and Spanish Snowball stemmer. Then the hand-labeled tweets used to

train the neural network were transformed into real-valued vectors using natural language

processing software separate from our neural network to produce word embeddings

(Collobert et al. 2011; Mikolov, Sutskever, et al. 2013). The software used to create these

embeddings is called word2vec and is freely available5. Because word embeddings have

not widely been utilized as a natural language processing tool in political science, a quick

explanation is in order.

The commonly utilized method to transform words into numeric vectors is to assign

each word a one-hot vector in R |V | where |V | is the vocabulary size of the text. Repeating

this process for all words across n documents results in the creation of a V × N term-

5The website hosting this software is https://deeplearning4j.org/
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document matrix where words that appear in a given document are given a value of 1, and

0 otherwise. Representing words in this way leads to substantial data sparsity and increases

the data required in order to successfully train statistical models (Mandelbaum and Shalev

2016). The one-hot encoding of words also discards much linguistic information regarding

the surrounding syntactic and semantic context of a given word in a sentence. Methods that

can retain this kind of information are able to use this information to increase classification

accuracy in many tasks (Bengio et al. 2003; Collobert et al. 2011).

One such natural language processing method is word embeddings. Word embeddings

are a set of language modeling and feature leaning techniques where words and phrases

from the vocabulary of the textual data are mapped to vectors of real numbers (Collobert

et al. 2011; Mikolov, Sutskever, et al. 2013; Mikolov, Chen, et al. 2013). The basic idea

behind word embeddings is to create a more meaningful numeric representation of the

text that contains both information regarding the word itself (i.e. the meaning of the word)

as well as information regarding the context of that word (i.e. its syntactic and semantic

relationship to other words in the text).

In word2vec, word embeddings are randomly generated and further tuned by maxi-

mizing the average log probability of the linguistic context c given word w, or in other

words, maximizing the dot product between informative word-context pairs (Goldberg

and Levy 2014)6. Rather than consider words as atomized features to be represented as a

6The process by which word embeddings are produced is complex and space constraints
do not permit a full explanation here. Theoretical work on the explicit processes by
which word embeddings are produced and by which the context surrounding individual
words is learned is an emerging research field in computational linguistics and statistics,
and the debate surrounding the explicit formalization of this process and its proofs is
ongoing. Possible methods by which embeddings are produced in the word2vec software
includes Implicit Matrix Factorization (Levy and Goldberg 2014), a Skip-gram Model
with Negative Sampling (Mikolov, Sutskever, et al. 2013; Mikolov, Chen, et al. 2013), and



14 MUCHLINSKI et al.

series of ones or zeros in a term-document matrix, word embedding models like word2vec

transform these sparse word representations into dense real-valued vectors.

Conceptually, the contextual meaning of a word is not determined by viewing a word

in isolation; one also needs an understanding of the surrounding linguistic context. Word

embeddings model the probability of a word occurring given that linguistic context. Words

are assigned a real valued vector such that words which appear in similar contexts cluster

together in the embedding space. The assignment of vector values to words and the

dimensions of the embedding space are meaningful only in the context of the embeddings

themselves. While each word is given a vector representation, the values of these vectors

have no valuation attached to them such that, for example, larger vectors are preferred to

smaller vectors, or assassinate is a word twice as violent as assault. Words like violence,

death, assault, fight, and kill will cluster together in the embedding space because word2vec

recognizes that these words co-occur more frequently together than do other words like

fraud, cheat, vote, and ballot. This allows our neural network to learn not only which

words are predictive of electoral violence, but also to learn other words in similar contexts

that also report on violent events. Some visualizations of word embedding space as well

as further conceptual examples are provided in the supplementary materials.

By maximizing the probability that a word occurs within a particular linguistic context,

word embeddings encode information not only on the word itself - its meaning - but

also the surrounding context in which that word occurs. To give a simple example, if

we think the word “assassinate” is indicative of electoral violence, we would expect that

a Bayesian log-linear generative model utilizing word context as informative priors (Arora
et al. 2015). We follow Mikolov, Sutskever, et al. (2013) and Mikolov, Chen, et al. (2013)
in this article who explain the mathematical formalization of word2vec as a Skip-gram
with Negative Sampling model.
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word to co-occur relatively more frequently in the context of other words like “dead”,

“politician”, and “candidate”. Utilizing a natural language processing model that accounts

for these kinds of linguistic relationships should increase the discovery of violent events

beyond methods that discard this broader linguistic information and only rely on one-hot

encodings of each of these words.

Describing the Convolutional Neural Network

Convolutional neural networks can be quite complex, and the number of hyperperameters

that are used to train the network can represent an extreme case of Gelman and Loken

(2013)’s “garden of forking paths”. This section introduces the basic components of

our neural network and explains their functions. A secondary subsection describes our

parameterization of the neural network including, among other parameters, our choice of

window size for the convolutional layer, and the dimensionality of our word embedding

model7.

Neural networks apply non-linear transformations to the input data, allowing nearly

any relationship between the response and predictor variables. This makes neural networks

7Replication code and data for this research can be found at the following locations:
Python code for the convolutional neural network at https://github.com/zzyxzz/
Twitter-Election-Classification. JSON file formatted Twitter data at http:
//researchdata.gla.ac.uk/564/. We wish to note that there is substantial debate
surrounding the extent to which complicated methodologies which rely on the setting
of multiple hyper-parameters and even starting seed values, like machine learning, and
especially neural networks, replicate exactly the same every time. For some clarification
on this debate see Ferro et al. (2016), Ferro and Kelly (2018), and Muchlinski et al. (2019).
Though perhaps the exact number of events discovered, the number of tweets captured, and
metric values may differ during future replications, the main results will hold. The neural
network will out-preform the support vector machine if our methodology is followed.

https://github.com/zzyxzz/Twitter-Election-Classification
https://github.com/zzyxzz/Twitter-Election-Classification
http://researchdata.gla.ac.uk/564/
http://researchdata.gla.ac.uk/564/
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ideal tools for textual analysis tasks as they can learn functional mapping between any

word in a vocabulary and the probability that a text references a violent event. Given we

do not assume to know the entire vocabulary which is predictive of such events, we allow

the neural network to learn these linguistic features directly from the data itself. Here we

introduce the basics of neural networks and expand these fundamentals to describe our

convolutional neural network in the following subsections.

The Basics of a Neural Network

A neural network used for the classification of a binary variable is a nonlinear and

interactive extension of the familiar logistic regression model (Beck, King, and Zeng

2000). Logistic regression fits one function to estimate the relationship between a dataset

of features X and the probability that a tweet references a violent event, call this πi . A

neural network can fit N approximations of this relationship. Statistically, we begin by

assuming the data Y, which represents observations regarding electoral violence, are

defined according to a known statistical distribution.

Yi ∼ Bernoulli

The standard logistic regression model expresses the relationship between X and π as

πi = logit(Xiβ) =
1

1 + e−Xiβ
.



We Need to Go Deeper 17

where i denotes the i-th tweet in the dataset. A neural network extends the logistic

regression model in the following way:

πi = logit[γ0 + γ1logit(Xiβ1) + γ2logit(Xiβ2) + · · · + γN logit(XiβN )]. (1)

πi = logit[γ0 + γ1logit(π1) + γ2logit(π2) + · · · + γN logit(πN )]. (2)

The γ terms in these equations are weights representing how much confidence the network

attaches to a given probability estimate of electoral violence. More generally, we can

write the weighted product of γnπn as a single weight matrix W, and replace the logistic

functional form with a more general form x. Rewriting 1 and 2 with more general notation,

we obtain:

f(x) = πi = x1W1 + · · · + xnWn. (3)

The functional form x is estimated directly from the data by the number N of

computation units in the network called “neurons”. Neurons are mathematical functions

that apply nonlinear transformations of the data to various parts of the network. In our

network, we use a type of neuron called a Rectified Linear Unit or ReLU, which passes

tweets to other layers of the network if and only if the neuron receives sufficient evidence

that a given vectorized tweet references electoral violence. The network learns which

linguistic features of a tweet reference violence through its learning procedure, called

backpropagation, which passes errors in classification backwards through the network.

This backpropagation provides the neurons with information regarding whether a tweet

was misclassified or correctly classified. If a tweet was correctly classified, the information

passed to the neurons by backpropegation does not substantially alter the weights for

a given vectorized tweet. If, however, a tweet was misclassified, the neural network
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will update its information regarding which features are indicative of electoral violence,

attaching different weight to different features. This process continues by gradient descent

until a global minimum is reached.

Explaining the Convolutional Neural Network

A neural network like the one outlined above represents the simplest architecture of a

neural network. Convolutional neural networks apply further transformations to the data

in order to enhance classification accuracy. These transformations are applied in different

layers of the network. Consider a neural network like a multiple-story office building.

The human resources and finance departments may be housed on different floors, but are

connected to each other and pass information regarding employees back and forth. Layers

of a deep neural network work in a similar way by applying different transformations to

the data and passing this information backwards and forwards through the network. Our

convolutional neural network is based upon the architecture described in Kim (2014) and

Severyn and Moschitti (2015), and consists of a convolutional layer, a max pooling layer,

a dropout layer, and a softmax layer. Each of these are explained in turn. To facilitate

ease of understanding, a diagram of our network is presented in Figure 2. Our neural

network was run using a standard Windows desktop computer with an Intel CPU 3.6 GHz

i7 processor and 16GB of RAM. Such a setup is readily available and inexpensive, making

this methodology competitive with current event data projects in political science.

The Convolutional Layer. Consider a tweet that reads “Ten people are dead in election day

violence”. A vectorized representation of this tweet generated from our word embedding

model is input to the first layer of the network, the convolutional layer. This layer passes a

series of filters over the vectorized tweet. These filters “read” the tweet, learning which
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Figure 2. Visual Depiction of the Convolutional Neural Network adapted from Kim (2014)

features indicate whether or not a tweet references violence by generating a series of

“feature maps”. These are d-dimensional vectors of tweet features - in essence vectorized

words or n-grams - that are learned to be representative of violence. To take the example

shown in Figure 2 above, three feature maps may be generated from this tweet. The

first is “ten people dead”, the second is “dead in election”, and the third is the word

“violence”. These feature maps can be different lengths and are generated endogenously by

the convolutional layer. They are passed to the next layer of the network, the Max Pooling

Layer, which concatenates these features maps together, then reduces them into a sparser,

but more easily learned, representation.

The Max Pooling Layer. The feature maps generated by the convolutional layer are diverse

and may be of substantial length depending on the length of the initial vectorized tweet.

Variation in the length of the feature maps may increase computation time and reduce

classification accuracy as the network has a greater number of parameters to learn. The

max pooling layer uses dimensionality reduction to concatenate the feature maps into a
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single vector, then removes all but the most salient features of these maps, speeding up

computation time by reducing the number of features the network has to learn.

In our example, the max pooling layer takes the three feature maps generated by the

convolutional layer: “ten people dead”, “dead in election”, “violence”, and reduces them

into a smaller vector that reads “people dead violence”. Though this reduced tweet is

not grammatically correct, it greatly assists the neural network to classify such a tweet as

referencing violence. As error rates are passed back through the max pooling layer by

backpropagation, fewer weight matrices are updated - because there are fewer words in the

tweet - and the neural network will learn this “tweet” references violence more quickly

and accurately than if it had to update weights for all features in the longer tweet “ten

people dead in election day violence”.

Dropout and Softmax Layers. The dropout layer acts like an ensemble learner. With a

certain probability p it keeps a set of neurons in the network active and switches the others

off. We set p equal to 0.5 such that through each iteration of training, the network used a

randomly selected half of its computational units to classify tweets. This allows us to avoid

overfitting. At the end of the training procedure, the results of training are averaged over all

training iterations. Since each training iteration used a random configuration of neurons,

our training results represent the weighted average of thousands of network configurations.

Averaging the training results over these thousands of different model configurations

reduces model bias. We further used L2 regularization to control overfitting.

The Softmax layer is the final output layer. It uses a variation of the logistic function

to classify the tweets passed by the max pooling layer into mutually exclusive categories

of electoral violence or not electoral violence. Concluding with our running example, the

concatenated tweet “people dead violence” is passed from the max pooling to the softmax
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layer. The softmax layer compares the features in this reduced-form tweet - “people dead

violence” - to the hand coded class label and assigns a probability to the category of

violence. Once this probability is assigned, backpropagation updates the weight matrices

for each individual feature in the reduced tweet to reflect new information that features

like “people”, “dead”, and “violence” are predictive of the class of violence.

As other tweets are similarly classified, the softmax layer continues to assign probabil-

ities that separate tweets into the mutually exclusive categories of violence or no violence.

As training continues, weight matrices are continually updated through backpropagation.

Over time, the weight attached to the feature “people” may decrease, indicating that this

is not a word that often predicts violence. But the weights of “dead” and “violence”

may increase, providing the network with information that those words are highly salient

predictors of the category of violence.

The Parameterization of our Neural Network and Word Embedding Model

To train and tune the parameters of the convolutional neural network and the support

vector machine, we use 5-fold cross validation, such that in each fold, 3 partitions are used

for training, 1 partition for validation, and 1 partition for test. Afterwards, the overall

performance on the test instances is assessed by averaging the scores across all folds.

The support vector machine was initialized using the LinearSVC model in the Python

scikit-learn library (Pedregosa et al. 2011) and the parameter c was tuned using 5-fold

cross-validation. Our neural network was also coded in Python using the Tensorflow

library (Abadi et al. 2016). For all the experiments conducted with the neural network,

we use 3 filter sizes m = {1, 2, 3}, stride s = 1, window size W = {1, 5, 10}, and the

dimension size of the word embedding model was set to D = {200, 500, 800}. For each
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filter size, 200 filters are applied to the convolutional layer, producing 600 feature maps in

total. Window size set to 10 and embedding size equal to 800 produced the best results, so

we set those values as default parameter values for all elections. For our word embedding

model, we set the batch size to 50, minimum word frequency to 5 and iterations to 5. As

the distribution of tweet classes (i.e. violence or no violence) were imbalanced, we also set

negative sampling to 10 as an additional parameter and conduct experiments by varying

negative sampling size ns = {2, 10}. The class imbalance in the training data is shown in

the supplementary materials. We note here that tweets describing electoral violence are

between 5%-6% of all tweets across all three elections. To correct for this class imbalance,

a weighted cross-entropy loss function was used to give a larger weight to the minority

class for the neural network. For the support vector machine, we set the class weights

parameter of the model to “balanced” in the Scikit-Learn library.

Robustness tests of our results across various combinations of window size and word

embedding dimension sizes, are extensively covered in Yang, Macdonald, and Ounis

(2018) Table 3 and Table 4 for the Venezuelan election and the Philippine election

respectively. Robustness tests displaying the results of varying the negative sampling size

are reported in Table 5 of Yang, Macdonald, and Ounis (2018)8. The neural network

consistently outperforms the support vector machine as measured by the F1 score across

every window size and every dimension size of the word embedding model for both

8The article containing our robustness checks, though written by some of our coauthors
does not have the same focus as this manuscript. Yang, Macdonald, and Ounis (2018)
examined the ability of a convolutional neural network to accurately classify tweets related
to electoral violence and malpractice. This was a purely experimental paper, and the
current manuscript has the empirical goal of extending the work of Yang, Macdonald, and
Ounis (2018) by comparing the classification ability of the neural network and support
vector machines to prominent datasets in political science which have been used to study
electoral violence.
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elections. Yet, as we note below in the results section, the classification performance of

the neural network compared to the support vector machine in the Ghanaian election is

not statistically significant, demonstrating, perhaps some limitations of this particular

methodology. Ghana lags both Venezuela and the Philippines in terms of Twitter users,

limiting our ability to gather data. Hootsuite, a social media management platform that

catalogues the number of social media users across all countries in the world estimated

only 10% of citizens were social media users in Ghana in 2016, compared to 47% in the

Philippines, and 38% in Venezuela9.

We note in Table 2 below that the neural network did not identify as many additional

violent events in the Ghanaian election compared to the support vector machine, though it

identified compartively many more events in the Philippines and Venezuela. The lack of

robustness of our results in Ghana may be due to a relatively low level of social media

penetration compared to our other two cases, a lack of mobile cell phone infrastructure

hampering people’s ability to record violence as it happens, or other factors. Further study

on the usefulness of digital media based research designs is most likely warranted for

most African nations to understand the factors hampering researcher’s ability to gather

sufficient data. Despite the more limited robustness in the Ghanian election, our results

are certainly robust across the other two - statistically significant - elections, suggesting

the neural network is a superior classifier of violent events compared to a support vector

machine because it is a more accurate algorithm, not because of any lucky parameter

settings. Researchers looking for guidance on how to parameterize future convolutional

neural networks should, of course, conduct similar experiments.

9Data accessed at https://datareportal.com/reports/digital-2016-global-digital-
yearbook, Feb 11, 2019
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Results: Estimating Electoral Violence

In the following sections, we describe the classification accuracy of our neural network

compared to a baseline algorithm, derive the total number of violent events for each

election, and compare the number of events discovered by our neural network to those

reported in other event datasets including ACLED, ICEWS, and SCAD. We chose a

support vector machine (SVM) for the baseline model because this algorithm has been

shown to accurately classify textual data referencing various forms of political violence

(D‘Orazio et al. 2014). We further ensure that the events our neural network has discovered

actually occurred using two methods. First, by verifying the veracity of each event using

local media sources. Tweets reporting violent events often contain other media, including

linked news reports that we can independently verify. The second is to create a qualitative

coding ontology which we apply to all data estimated by our neural network as well as all

violent data occurring during the two-month electoral period in ACLED, ICEWS, and

SCAD. Qualitatively coding this data gives us greater insight into whether a violent event

that occurred was causally related to the election. To code this information qualitatively,

we rely on linked news stories in our tweets, but because we do not have access to the

textual sources underlying the data in the other datasets, we are forced to make judgments

about how likely these events were related to the election10.

We use several metrics to compare classification accuracy between the neural network

and support vector machine including precision, recall, and the F-1 score. Precision, is de-

fined as true positives
true positives+ f alse positives , while recall is given by

true positives
true positives+ f alse negatives .

10ACLED and SCAD contain some notes about each event taken from the underlying
text, and we use these notes to assist our qualitative coding of that data as well.



We Need to Go Deeper 25

The F-1 score is the harmonic mean of precision and recall.

To briefly summarize, we find that our neural network more accurately classifies tweets

that report actual electoral violence compared to a support vector machine. The neural

network identifies thousands more violent tweets in the data, allowing us to discover many

violent events that would have gone undiscovered by utilizing other methods. We further

find substantial concept validity of our data by measuring the temporal distribution of

electoral violence and by qualitatively coding our observations.

Comparing Classification Accuracy

After the neural network and support vector machine were trained, the parameters of each

algorithm are saved, and classification accuracy is assessed using a hold-out test dataset of

tweets. Because each model was trained separately for each election, test set accuracy was

also assessed for each election separately. Table 1 compares the classification accuracy

of the neural network compared to the support vector machine. Because it combines

information from both precision and recall, we utilize the F-1 score as our primary metric

of classification accuracy. As is clear from the table, the neural network more accurately

discovers electoral violence in social media as shown by the higher F-1 scores across all

elections. These differences, further, are statistically significant using McNemar’s test

for the elections in the Philippines (p=0.0153) and Venezuela (p=0.0218), but are not

significant for the Ghanaian election (p=0.0736)

Compared to the support vector machine’s performance on the entire tweet-level data

(training and test sets), the neural network identifies 27,282 (47%) additional tweets

referencing violence during the Venezuelan election, 1,135 (13%) additional tweets for the

Philippine election, and 18,868 (76%) tweets for the Ghanaian election. These are large



26 MUCHLINSKI et al.

table 1 Classification Accuracy for Electoral Violence Tweets
Country Classifier Precision Recall F-1

Venezuela SVM 71.3 72.0 71.5
CNN 74.3 75.4 74.6

Philippines SVM 67.1 76.1 70.9
CNN 78.7 74.0 75.9

Ghana SVM 75.1 77.6 76.0
CNN 82.6 72.9 77.1

numbers, and it is likely that among these tens of thousands of additional tweets, there are

tweets referencing violent events that the support vector machine has not discovered.

In effect, this replicates one of the problems of electoral violence data all over again:

under-reporting bias. Given the support vector machine fails to identify over forty thousand

tweets that actually report on violent events, we cannot be confident that this method will

be able to provide an accurate accounting of the total number of such events for each

election. However, it may also be the case that the neural network is simply producing

many more false positives. What is needed is a way to determine if the two algorithms

detect a different number of violent events, rather than simply detecting a different number

of tweets referencing violence. If the tweets classified by the neural network reference a

larger number of violent events, we can more accurately determine the level of electoral

violence for each election.

Discovering the Number of Violent Events with Clustering

Because multiple Twitter users may report on the same event, counting each tweet as a

single event would provide an inflated estimate of violence across our three elections. To

discover how many events actually occurred we utilize K-means clustering. K-means

clustering partitions the data space of observations into k clusters, where k is chosen as a

hyperparameter by the researcher. For each election, we set k = 100, one hundred being a
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large enough number such that all violent events could potentially be observed11. As our

tweets have been transformed into word embeddings, tweets which report on the same

event will contain similar linguistic information, and thus have similar numerical values.

Tweets with similar values will cluster closely together, while tweets reporting on different

events should cluster further away in the data space. Partitioning this space into clusters

assists in the discovery of individual violent events.

The results of our clustering analysis are showing in Table 2, which shows the number

of events discovered by each algorithm across all elections, as well as the difference in

events discovered between the neural network and the support vector machine. The neural

network discovers an additional 15 violent events in Venezuela, 11 in the Philippines, and

3 in Ghana compared to the support vector machine.

table 2 Number of Violent Events per Election
Country Classifier Number of Violent Events Difference

Venezuela SVM 32
CNN 47 +15

Philippines SVM 36
CNN 47 +11

Ghana SVM 42
CNN 45 +3

11The exact choice of k in our analysis does not matter as long as it is sufficiently large
to capture all relevant events. The idea is to have a reasonable number of clusters for
authors to manually validate the events. A small number will lead to clusters with mixed
events but a very large number will necessitate that researchers spend more time to check
the homogeneity of event clusters. For some experiments demonstrating how the choice
of k affects inter- and intra-tweet cluster homogeneity, see the supplementary materials.
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Electoral Violence in Social Media: Measuring Concept Validity

Here we examine the concept validity of our estimates of electoral violence by examining

temporal trends in violence during each election compared to that of violent events recorded

in other established event datasets including ACLED, ICEWS, and SCAD. The objective of

electoral violence is to influence the electoral process (Höglund 2009). Because violence

can be strategically deployed to affect voting patterns, electoral violence tends to increase

in frequency as election-day approaches (Harish and Little 2017). Therefore, we should

expect to discover an increase in violence in the days immediately surrounding each

election, as electoral actors strategically deploy violence in order to affect the results of

the election according to their particular ends.

Figure 3. Temporal Trends of Electoral Violence

Figure 3 shows temporal trends in violence across all three elections. As is clear from
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each graph, the temporal trends discovered by our neural network are quite different from

those recorded elsewhere. This suggests that our method is detecting a different type of

violence. For each election, our neural network detects substantial increases in electoral

violence in the days immediately surrounding each election (election day is represented as

0 on the x-axis), a trend no other dataset picks up, except for ACLED in the Ghanaian

election. Our results mirror the finding of Harish and Little (2017) who discover that

political violence tracks electoral periods closely in what they term a “political violence

cycle”, where violence tends to start from a low-level baseline before the election, increase

as elections near eventually violence peaking on and around election day itself, then

returns to the pre-electoral baseline within a month after the election. This suggests that

our estimates of electoral violence have good concept validity. By measuring violence

that peaks on election-day, our algorithm is accurately estimating political violence that is

directly related to the electoral process.

Qualitatively Coding Electoral Violence

To ensure the neural network has discovered violent events that are correlated to the

electoral process, we developed a qualitative coding ontology of all events discovered by

our neural network as well as all events recorded by ACLED, ICEWS, and SCAD. We

separate events into six mutually exclusive categories: strongly related to the election,

probably related to the election, probably not related to the election, not related to the

election, related to the election but not violent, and the final category being not enough

information to code. We develop a qualitative codebook to separate events into these

mutually exclusive categories. For data collected by our neural network, we relied on

linked urls to news articles to determine the association of each event to each election.
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When tweets contained no linked news article, we could not determine if there was

sufficient information to determine the causal relation of an event to the election. Because

we do not have access to the text from which events in ACLED, ICEWS, and SCAD are

coded, we rely on the descriptions of each event in these datasets to assess the relationship

of those events to the electoral process.

Events were coded as “strongly” related to the election if at least one actor had strong

connections to the electoral process, such as being a political party or activist, and if it

could be corroborated through a description of the event that the motive for the violence

was related to the election12. Events are “probably” related to the election if at least

one actor could be linked to the electoral process, but if the motive for engaging in the

violence remained unclear. Events for which the identity of either actor is ambiguous (i.e.

“vigilante militia”, or “civilians”) and for which the motive is unclear are coded as probably

not related to the election. Events are coded as not related to the election if no actor has an

identification that can be clearly traced to the electoral process, and if the motive for the

incident is clearly not related to the election. Events could also be coded as related to the

election, but the event was not violent in nature. An example would be if members of a

political party staged a rally, and no violence broke out. Finally, there were often events

which could not be corroborated using alternative sources of data, or the identity of at

least one actor was completely unknown (i.e. the identity of the perpetrator or victim

in ACLED, ICEWS, or SCAD was left blank). These events were coded as not having

12ICEWS, which is the only alternative source of event data for two elections, does not
contain any additional descriptions of events, like notes, which can be used to get a better
understanding of the event. Fortunately, ACLED and SCAD do contain such information,
and we use this additional data to assist in our qualitative coding of data from ACLED.
For other reasons, we do not report the relationship of events in SCAD to the election here.
We explain this reason in the text below.
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enough information to determine how strongly that event was related to the election13.

The qualitative coding of the data collected by our neural network confirms our earlier

results, with an important caveat. The neural network is able to determine with a high

degree of confidence whether events are correlated with the electoral process, but only

for English language tweets. For the Venezuela election, there is little difference in the

percentage of tweets qualitatively classified as “strongly” or “probably” related to the

election compared to ICEWS or our neural network. We begin by noting that our neural

network discovered more than twice as many violent events during the Venezuelan election

compared to ICEWS. We discovered 47 violent incidents, compared to 16 recorded by

ICEWS. The proportions of events that are related to the election among the two datasets,

however, are similar. The neural network suggests that 53% of events discovered are

strongly or probably related to the Venezuelan election. By contrast, 56% of events in

ICEWS fall into the same two categories. While our neural network detects a greater

number of violent events, it does no better than existing datasets at classifying the

relationship of those events to the electoral process.

When the neural network is trained on English language tweets, however, it is able to

far surpass other datasets in determining which violent events are related to the electoral

process. These results are shown in Table 3. For instance, our qualitative coding of the

Philippine election demonstrates most recorded violence in ICEWS is not related to the

electoral process. ICEWS records 106 violent events, compared to 51 discovered by our

neural network. Seventy-eight percent of all events recorded by the neural network during

the Philippine election are either “strongly” or “probably” related to the election. By

contrast, only seven percent of all observations recorded in ICEWS could be considered to

13The qualitatively coded datasets are available from the authors
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table 3 Rates of Qualitative Classification for Each Election According to Different Datasets
Election Strongly Probably Probably Not Not Related Not Violence No Info

Venezuela (NN) 0.33 0.20 0.04 0.09 0.15 0.20
Venezuela (ICEWS) 0.06 0.50 0.19 0.25 0.00 0.00
Philippines (NN) 0.53 0.25 0.02 0.06 0.02 0.10

Philippines (ICEWS) 0.00 0.07 0.08 0.74 0.00 0.10
Ghana (NN) 0.66 0.18 0.00 0.02 0.07 0.07

Ghana (ACLED) 0.40 0.04 0.00 0.16 0.40 0.00

be “probably” election related, and no event could be considered to be “strongly” related

to the election. The vast majority of violence contained in ICEWS are false positives

reporting the killings of drug dealers or users, or military actions against rebel groups like

Abu Sayyaf. The first category of events are clearly unrelated to the election. The second

could plausibly be related to the electoral process, but the insurgency against such rebels

has long predated the 2016 election, so such violence is quite unlikely to have electoral

causes.

Similar results hold for the election in Ghana. Our neural network discovered 45

violent events, compared to 29 in ACLED, 2 in ICEWS, and 3 in SCAD14. ACLED does a

comparatively good job in correctly identifying electoral violence. It suggests 44% of

the 29 events are “strongly” or “probably” related to the election. Our neural network,

however, is twice as accurate in correctly identifying true positives - violent events that

were “strongly” or “probably” related to the election. ACLED incorrectly classifies 40%

of its events as violent when there is considerable evidence in ACLED itself to suggest

they were peaceful. Adding the additional 16% of events that are not related to the election,

ACLED’s false positive rate is 56% - twelve percent higher than its true positive rate.

These results demonstrate that our machine learning platform is vastly more accurate

14We report only the comparison with ACLED in Table 3 due to these small sample
sizes.
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in correctly identifying electoral violence as compared to existing event datasets. This

suggests statistical models of electoral violence developed using these event datasets should

be interpreted with caution because rates of misclassification on the dependent variable

appear to be substantial. Scholars working in this field may wish to utilize alternative

sources of information to measure electoral violence. Social media is one useful source of

text, but many more may exist. Lastly, our results show that the choice of machine learning

algorithm matters for measuring violent events in text. The support vector machine

possibly under counted the true rate of violence during these three elections, contributing

to another possible source of statistical bias. While we have demonstrated our neural

network is able to estimate electoral violence more accurately than existing methods,

our machine learning method can be applied to different, and much broader, classes of

political phenomena. While convolutional neural networks can be quite complex, and they

remain the blackest of back boxes, they are useful to the broader community of political

methodologists or any researcher who simply wishes to measure data developed from

unstructured text more accurately.

Conclusion

Election related violence plagues a significant number of countries around the world. It

impedes the peaceful transition of power and can prevent citizens from exercising their

constitutionally protected rights to chose their elected leaders. Despite a proliferation

of recent research into this phenomenon, the concept of electoral violence still remains

ill-defined and most studies assume, rather than validate, that violence occurring during

elections actually seeks to affect the electoral process in some way. We have developed a

new method to collect, code, and validate data mined from social media to estimate trends
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in electoral violence during three elections in different countries. We have demonstrated

that our machine learning pipeline more accurately measures electoral violence compared

to existing datatsets and other state of the art machine learning algorithms. We show that

the trends in violence uncovered by our neural network peak on or near election day, and

we demonstrate through qualitative coding that the data we have collected has a stronger

causal connection to the electoral process compared to existing data in ACLED, ICEWS,

and SCAD.

Electoral violence can take a variety of forms, is perpetrated by many different actors,

and often falls short of erupting into full-fledged civil conflict. Thus, it can be difficult

to correlate the presence of any violent event that occurs to the election itself. We have

provided scholars with a method of moving past this technical barrier. Because it is a

more direct type of reporting, often from observers of the event itself, social media may

offer a more straight forward way to discover violent events. Further, since news reports

are often linked to in the tweets themselves, such events can be easily confirmed using

alternative sources of information. We have shown that word embeddings, further, provide

machine learning classifiers greater accuracy in identifying instances of violence in text.

These tools currently show the most promise in enhancing natural language processing

pipelines, like ours, and classifiers trained using such embeddings have proven to be more

accurate than commonly utilized tools across the discipline (Beieler 2016). Our results

demonstrate that word embeddings outperform traditional bag-of-words approaches to

textual analysis. The ability of word embeddings to encode not just about the word itself,

but its linguistic relationship to other parts of the text, enhances classification accuracy,

assisting the discovery of violent events. Our neural network classifier, further, has been

demonstrated to be a more accurate algorithm for identifying instances of violence in

social media text compared to other machine learning algorithms, like support vector
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machines, that have previously been utilized for similar tasks.

We are aware of the limitations of our methodology. Because we derive our data on

electoral violence from social media, Internet and social media access is a prerequisite

for measuring electoral violence. Scholars utilizing our methodology will not be able

to measure electoral violence in countries where citizen access to the Internet is limited.

Scholars must also remain vigilant against the spread of misinformation throughout social

media networks, and validate the information they gather against alternative sources. The

performance of our methodology may deteriorate somewhat in countries where English

is not the primary language used across social media platforms. Further application of

this methodology to multilingual datasets of tweets is warranted to resolve this possible

limitation. However, when tweets are written in English, and Internet and social media

usage is high, our methodology can provide scholars with an alternative way to measure

contested violent concepts, like electoral violence, with a greater degree of accuracy than

has previously been possible.

Our results also demonstrate that the granularity by which media is reported matters.

Both ACLED and our neural network utilize national, regional, and local reporting

sources. Of the three event datasets, ACLED seems to be more accurate in identifying

electoral violence, though it is extremely difficult to determine if this result would hold

across additional elections. Because ACLED does not contain data on Venezuela or

the Philippines, a more thorough comparison is not possible within the scope of this

project. While ACLED is the most accurate in identifying the nature of electoral violence,

it is interesting to note that our neural network discovered fourteen additional violent

events during the Ghanaian election. A detailed analysis of why our neural network

discovered more events, even holding the locality of news reporting more or less constant,

is unfortunately outside the scope of this project. Despite our ignorance on this issue, we
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can heartily advise scholars to, where possible, utilize the most disaggregated source of

reporting that is relevant for their research needs.

Perhaps unexpectedly, we have also uncovered a result suggesting that the choice of

algorithm used to discover violent events in text matters. Given the inherent costs of

failing to accurately diagnose potential conflicts, including electoral violence, we suggest

scholars utilize the most accurate methods available to ameliorate any possible source

of under-reporting bias. Though neural networks are quite complex, and the process by

which they produce their estimates are a subject of much current research, they are worth

using for tasks in which the box of causality can remain black. If researchers only wish to

recover the most accurate estimates of violence from text, it makes sense to use the most

accurate method. Of course a sophisticated machine learning algorithm cannot substitute

for the watchful eye of an expert researcher, but it can be a powerful tool in the right hands.

Given our success in estimating electoral violence, we invite scholars of political violence

more generally to embrace this new technology and take a dive in the deep end.
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