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Outline



First Things First

• To get the most out of this lecture, you will need:
• At least one (preferably two or more) courses in probability

theory or econometrics, ideally up to Maximum Likelihood
Estimation
• R or R Studio installed on your machine and at least some

familiarity with the basics of R programming (i.e. building and
analyzing regression models).
• The Caret library installed in R or R Studio
• Python is acceptable if you work in that language. I work

exclusively in R, but the theory is the same for Python, and from
what I understand, the syntax is largely similar.
• The days of STATA or SPSS are over, we’re well past those

training wheels at this point.
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First Things First

• After lunch, we will focus on some applications of machine
learning to real world data. Visit my website here XXXXX to
download the .csv files for the data as well as replication R code
for our first application walk-through. You can access these
slides there as well.

• After going through the replication, you will be asked to do your
own analyzes in Caret, including running your own machine
learning models, and analyzing their outputs.

• If you have not installed R, R Studio, or caret (with
dependencies) yet, I suggest you do so now, as caret alone will
take at least a hour to download with dependencies.
Downloading it without dependencies is possible, but you may
have questions when attempting to initialize certain models
later on.

• Any initial questions?
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Overview of Machine Learning



A Gentle Introduction to Machine Learning

• What is Machine (Statistical) Learning?
• What is it used for?
• Why is it suddenly everywhere?
• How is it different from traditional social science quantitative
analysis (regression modeling)?
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What is Statistical Learning?

• Statistical learning refers to a vast set of tools for
understanding data1.

• Statistical learning uses various non-parametric algorithms to
estimate relationships among various outputs and inputs

• Statistical learning techniques, broadly, fall into two classes
• Supervised: predictive target is specified in advance (i.e.

fraud detection, predicting party identification, predicting civil
war, sentence parsing for event data)
• Unsupervised: no predictive target specified (i.e. topic

modeling, clustering) - Not dealt with in this lecture

1James et al. (2013). An Introduction to Statistical Learning: with Applications in R.
Springer Texts in Statistics
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What is Statistical Learning?

• Think back to your first regression modeling class.
• In that class, you modeled the relationship between two
variables X and Y according to the following function
• (X′X)−1X′Y where
• y = β0 + β1x1+ ϵ
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What is Statistical Learning?

• This model is a parametric model. It assumes a particular
relationship between X and Y

• It measures the probability of observing a relationship between
X and Y at least as extreme as that observed assuming the null
hypothesis represents the true state of the world

• X variables have a statistically significant relationship with Y iff
p is less than some certain threshold, usually 0.05.

• Goodness of fit tests are determined by R2 to determine
whether a linear relationship between X and Y is a useful
approximation of the actual empirical relationship between
those two variables in some larger population
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What is Statistical Learning?

• By contrast, machine learning is non-parametric
• Instead of assuming a relationship from the data a priori and
then testing to see if that relationship is true, machine learning
uses various methods to estimate the relationship f(x) directly
from the data itself

• Machine learning methods run the gamut of “parametric-ness”
• Some, like Ridge Regression or the Lasso are based on the

linear model, but use non-parametric techniques including
regularization to enhance predictive accuracy
• Others, like deep neural networks are completely black

boxes where it is almost impossible to determine the
relationship between inputs and outputs
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What is Statistical Learning Used For?

• Prediction - what predictors
are associated with civil war
onset?

• Inference - by how much
does the probability of civil
war increase if infant
mortality increases by 10%?

• Flexible vs. restrictive
approaches

• OLS is a tool of machine
learning too
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What is Statistical Learning Used For?

• Restrictive Methods
• Linear Regression (OLS,

logit, probit)
• Lasso, Elastic Net,

penalized regression models
• Principal Components

Analysis
• Use when the goal is

inference

• Flexible Methods
• Support Vector Machines,

splines
• Boosting, bagging,

tree-based methods
• Neural Networks
• Use when the goal is

prediction
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What is Statistical Learning Used For?

• Which goes to say, what makes statistical learning is not this or
that algorithm

• It is a different say of understanding how to do statistical
modeling

• Yes, some methods are vastly different from standard
regression modeling, but standard models can be successfully
incorporated into statistical learning too

• Hopefully by the end of today, you will get a basic understanding
of how ML is philosophically different from regression modeling.
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Why is Statistical Learning Suddenly Everywhere?

• 2 main factors
• Increased computing power
• Proliferation of data

• Both are necessary for statistical learning to be effective
• Sample size: s =

∑n
1 (xi−x̄)

2

n−1

• Sample size: cross-validation, bias-variance trade-off
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Why is Statistical Learning Suddenly Everywhere?

• Also the Zeitgeist - Facebook and election hacking, the Internet
of Things, Quantum Computing, cyber attacks on Iranian C&C
systems

• In short, the Digital Revolution would not be possible without
machine learning

• We can also not understand the effects of this revolution on
society without machine learning

• 2.5 quintillion bytes of data are currently created each day.
• Over the last two year, humans created 90% of all the data

ever produced in recorded history.
• The increasing pace of human-produced data makes 19th

century statistical methods obsolete
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How is Statistical Learning Different from Regression Modeling?

• Differences in data (images, text, sound)
• p >> n is no longer a problem
• Different focus, different questions
• But some problems still remain - “Big Data” will not eliminate
fundamental statistical problems (sometimes it makes them
worse)2

• Causal inference
• Omitted variable bias
• Endogeneity
• Interpretation

2Titiunik, R. (2015). Can big data solve the fundamental problem of causal inference?.
PS: Political Science Politics, 48(1), 75-79.
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How is Statistical Learning Different from Regression Modeling?

• Assuming we keep modelM constant atM=OLS

1. Focus is on prediction vs. explanation
2. Cross-validation
3. Exchange higher variance in parameter estimation across

model subsets for lower bias in final model
4. Split-sample train and test sets
5. Model validation done by out-of-sample measures of fit vs.

in-sample fit measurements
6. Focus is on the model, not the parameters
7. There are no p-values or standard errors
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Prediction vs. Explanation,
Regression Modeling vs. Machine
Learning



Short Theoretical Exposition

• All statistics starts with data3.
• Assume some data X and Y that are generated according to
some DGP, we’ll call N for now

• So N basically orders reality according to some process that is
essentially unknown

• What Leo Breiman calls “the two cultures” of statistical modeling
understand the process of estimating N in different ways

3Breiman, Leo (2001). ”Statistical Modeling: the Two Cultures. Statistical Science 16(3)
199-231
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Short Theoretical Exposition

• The “Data Modeling” Culture4

• This culture starts by assuming N ∼ i.i.d. Normal, Poisson,
Weibull

• Inputs influence Y according to known parametric DGP, which
can be estimated using in-sample goodness of fit tests,
combined with examination of residuals

• X affects Y iff Px < 0.05

4Breiman, Leo (2001). ”Statistical Modeling: the Two Cultures. Statistical Science 16(3)
199-231
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Short Theoretical Exposition

• The “Algorithmic Modeling Culture”
• The nature of N is complex and unknown (unknowable?)
• Rather than assuming N ∼ Normal, Negative Binomial, Beta,
this “culture” simply wants to find a function f that does a good
job of using X to predict the response Y

• Model validation rests on out-of-sample predictive accuracy
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Short Theoretical Exposition

• Why do these two cultures adopt such different approaches to
estimating f(N )?

• Each culture’s response is an attempt to overcome the Curse of
Dimensionality

• Simply put, it states that as a statistical model’s parameter
space increases linearly (1+2+3+4+5+6), data sparsity increases
exponentially (1+2+4+8+16+32)

• Formally, as the number of parameters of a model increases, the
total number of possible models isM(2p)
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Short Theoretical Exposition

• Here is the CoD illustrated5.

5Hastie, Trevor, Tibshirani, Robert, and Freidman, Jerome (2009). The Elements of
Statistical Learning, 2nd Editon. Springer
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How to Overcome the CoD

• Data Modeling Culture:
• Set restrictions on the shape of the relationship of f(N )

• By considering only one possible relationship between X
and Y, you are forcing the data to fit only a fraction of points in
the data. Reduces amount of data needed to estimate a model.
• Beware: Any linear model will do a poor job of predicting

new Y if the true relationship between X and Y is non-linear
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How to Overcome the CoD

• Algorithmic Modeling Culture
• Use re-sampling methods (boosting, bagging, dropout),

regularization/penalization, or other methods to estimate f(N )

directly from the data itself
• Iteratively sample the data space T times until there is

sufficient data to estimate f(N ) without overfitting
• Beware: Re-sampling methods (and machine learning in

general) require much more data to estimate f(N ) than
parametric models because no restrictions are being placed on
the form of f
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Estimate Directly or Assume a Model?
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Why Machine Learning?

• Statistical significance is a poor measure of predictive accuracy6.
• Traditional regression modeling fits the model to the
population7. This means most models are fitting noise rather
than signal.

6Ward, M. D., Greenhill, B. D., & Bakke, K. M. (2010). The perils of policy by p-value:
Predicting civil conflicts. Journal of peace research, 47(4), 363-375.
7This is dumb and wrong. Schrodt, P. A. (2014). Seven deadly sins of contemporary
quantitative political analysis. Journal of peace research, 51(2), 287-300.
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Why Machine Learning?

• Most significant variables fail
to predict any events in
out-of-sample data

• Implications for theory
• Do we actually

understand the causes of
civil war if we can’t predict
where/when a new onset will
occur?

• Implications for policy
• Are we giving correct

advice to policymakers?
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Superior Prediction for Machine Learning vs. Regression Model-
ing

• Due to the limitations of regression modeling, we want to
discover if there are other methods that might be better able to
predict events of interest (civil wars, regime changes, partisan
realignments, etc...)

• Fundamentally, these limitations stem from the parametric
assumptions we fit to our data. Most relationships between X
and Y are not linear.

• Let’s visualize why flexibility in estimating f(N ) may provide
some benefit in prediction 8

8Following slides are from Hastie, T., Tibshirani, R., & Friedman, J. (2009). The
elements of statistical learning: data mining, inference, and prediction, Springer
Series in Statistics.
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Superior Prediction for Machine Learning vs. Regression Model-
ing: Simulated Data

• Linear Regression for Binary
Predictor: i.e. Logistic
Regression
• Lots of misclassification
• Restrictive decision

boundary
• Any linear boundary will

induce high rate of error in
this data
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Superior Prediction for Machine Learning vs. Regression Model-
ing: Simulated Data

• A Machine Learning Approach
- k Nearest Neighbors (k=15)
• Less

misclassification/error
• More “wiggly” decision

boundary
• Pretty good, but can we

do better?
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Superior Prediction for Machine Learning vs. Regression Model-
ing: Simulated Data

• A Machine Learning Approach
- k Nearest Neighbors (k=1)
• Near perfect accuracy
• Multiple decision

boundaries
• What’s the possible

danger here?
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Superior Prediction for Machine Learning vs. Regression Model-
ing: Simulated Data

• Error Rates for Regression
and Nearest Neighbors
• NN has far less error

than linear regression model
• Except as # neighbors

approaches N
• Optimal # of neighbors

appears to be about 10
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Superior Prediction for Machine Learning vs. Regression Model-
ing: Empirical Data
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Prediction, Explanation, Theory,
and Machine Learning:
Integrating Machine Learning
into Quantitative Social Science



So...What’s to Be Done?

• Regression models lack predictive power, despite the presence
of statistically significant variables which purport to “explain”
why an event occurs.

• Yet if a variable explains shy something occurs, we should
expect to find that “cause” when observing the same event in
the future.

• But as Ward et al. (2010) show, this isn’t the case with our
regression models
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Some Philosophy of Science

• Deductive Regression Modeling
1. Build theory
2. Collect data
3. Test data against theory
4. Make conclusions
5. Repeat if necessary
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Philosophy of Regression Modeling

• Chose variables identified by theory as causal
• Chose variables suggested by literature as conditional “controls”
• If causal variable is significant, given joint distribution of
controls, then X causes Y

• Chuck in fixed/random FX, clustered standard errors, IVs, DID,
etc...as causal identification strategies

• Examine residuals, conduct goodness of fit tests, examine effect
sizes

• Conclude with causal story or policy advice
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Problems with this Approach

• Theoretical problems9

1. “Garbage Can Models” and the problem of multicollinearity in
linear models10

2. Misunderstanding model assumptions (perfectly measured
predictors, error term uncorrelated with response, relationship
between X and Y is linear)

3. Incorrect utilization of NHST (i.e. we formulate our hypotheses as
Bayesians, but test them as frequentists) and interpretation of
p-values11.

9Schrodt, P. A. (2014). Seven deadly sins of contemporary quantitative political
analysis. Journal of peace research, 51(2), 287-300.
10Achen, C. H. (2005). Let’s put garbage-can regressions and garbage-can probits
where they belong. Conflict Management and Peace Science, 22(4), 327-339.
11Gill, J. (1999). The insignificance of null hypothesis significance testing. Political
research quarterly, 52(3), 647-674.
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So...What’s to be Done?

• Theory:
1. Reevaluate what theory is12

2. Do we have to begin with theory? Exploratory data analysis.
3. Identify large causal factors, move away from “proxies” and
minutiae (i.e. “Greed” vs. “Grievance” debate is a good example of
what factors to focus on)

12Ward, M. D. (2016). Can we predict politics? Toward what end?. Journal of Global
Security Studies, 1(1), 80-91.
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So...What’s to be Done?

• For Policy:
1. Focus on predictive accuracy - often what the client wants to know
anyway

2. Theory is probably irrelevant anyway
3. If data collection is inexpensive, utilize as “big” a dataset as you
can, with appropriate tools
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More Philosophy of Science: Prediction vs. “Explanation”

• Conflation of prediction and explanation in statistics literature13

• Both are necessary for generating and testing theory, but in
different ways

13Shmueli, G. (2010). To explain or to predict?. Statistical science, 25(3), 289-310.
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Scientific Functions of Predictive ModelingShmueli, G. (2010). To
explain or to predict?. Statistical science, 25(3), 289-310.

1. Uncovering new relationships and hypotheses (esp. in large
datasets)

2. Discovering new/different measures or operationalizations of
key variables

3. Enhancing current explanatory models by capturing more
complex (non-linear, interactive) relationships

4. Greater external face validity. More immediate generalization.
5. Straightforwrd way of assessing competing theories.
6. Gold standard of theory testing. Establishing baseline

measures of theory validity.
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Are Explanation and Prediction Different?

• In one sense, explanation and prediction should be two sides of
the same coin.

• For a model to explain something, it must be able to predict it at
some level.

• The difference comes down to how models are used and why
they are used that way

• But the original formulation is not wholly wrong. Model
validation should be understood as a continuum where models
are subjected to increasingly stringent predictive tests14.

14Cranmer, S. J., Desmarais, B. A. (2017). What can we learn from predictive modeling?.
Political Analysis, 25(2), 145-166.
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Are Explanation and Prediction Different?

• Assume a model F(x):
• Assume further some relationship between Y and X

represents F
• The goal of statistical analysis is to estimate F, but there are

the normal problems preventing us from doing so
• Because of these problems, we cannot estimate F, so we

instead settle for estimating a series of f’s
• But which f is the best representation of F?
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Are Explanation and Prediction Different?

• Standard response: what is the goodness of fit of f?.
• Acceptable, but we now know this is steering between the rock
of omitted variable bias the the hard place of an overfit model
(i.e. Fearon and Laitin (2003)).

• Is our theory detailed enough to specify every variable that
should belong in our regression equation, including controls?

• Addition of spurious variables causes regression coefficients to
“jump around like a box of gerbils on methamphetamines”15.

15Schrodt, P. A. (2014). Seven deadly sins of contemporary quantitative political
analysis. Journal of peace research, 51(2), 287-300.
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Are Explanation and Prediction Different?

• So, if we cannot reliably estimate F from a series of f’s (at least
not with standard regression techniques), why not attempt to
estimate F in another way?

• Estimate F from the data directly
• Estimate how far from F a given f is by measuring different in
predictive accuracy.

• At least we always know what F’s predictive accuracy is. So it
gives us a useful baseline against which to measure.
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Introducing Machine Learning
with Classification and
Regression Trees (CART)



Binary Classification Using Logistic Regression

• Assume that some data were generated according to the
following GDP:

• D ∼ Binomial
• From logistic regression, we know:
• pi = 1

1+e−xiβ
, where −xiβ = µi

• So the DGP is modeled as a function of the proportion of
positive cases in the data (i.e. the mean of the DV)
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Binary Classification Using Logistic Regression

• Logistic regression models a
function f(x) as a linear
combination of independent
variables to separate 0s from
1s in the data

• It attempts to do so by
effectively creating a
hyperplane through the data
that does the best job of
putting 0s on one side of the
place and 1s on the other
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Binary Classification Using Logistic Regression

• While a linear fit does a good
job of separating the green
and orange observations, it
does a poor job with the blue
observations

• If this was just a simple
binary classification problem
(ignore blue), no further
action would be required.

• However, little data in social
science falls into such neatly
ordered spaces

• Note than a multinomial
logistic regression or linear
discriminant analysis would
be a good fit here 46



From Logistic Regression to Classification (Decision) Trees

• While logistic regression models the data space according to the
joint distribution between the response and predictor variables,
CART fits a classification tree to binary data according to
different criteria

• The tree-growing algorithm is non-parametric, meaning it does
not depend on the distribution of the data to make decisions
regarding various cut points in the data.

• CART selects variables to partition the data on by maximizing
data homogeneity (i.e. minimizing classification error)
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Introducing Tree-Based Methods for Regression and Classifica-
tion

• A regression (decision) tree is a recursive partitioning of the
data space by some value (i.e. a constant) such that the data
space becomes more homogeneous on Y according to each
additional partition.

• For example, the full dataset exists at the top of the tree, and
the algorithm selects the variable to partition the data such that
the variable cut point optimizes different values of Y in the
newly recreated regions R.

• This process is repeated iteratively until some stopping criterion
(i.e. depth, error rate) is achieved.

• The end result, displayed visually, looks something like this:

48



Introducing Tree-Based Methods for Regression and Classifica-
tion16

16Hastie, T., Tibshirani, R., & Friedman, J. (2009). The elements of statistical learning:
data mining, inference, and prediction, Springer Series in Statistics
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Introducing Tree-Based Methods for Regression and Classifica-
tion

• Like normal trees, regression (classification) trees are “grown” to
the data.

• Also like normal trees, their is an optimal size to grow each tree
(i.e. minimization of error)

• The tree-growing algorithm selects variables (features) to split
the data automatically.

• Tree complexity (i.e. size, topology) is determined by
cross-validation
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Cross-Validation

• Cross-validation is a means of reducing bias in the final model
by exchanging greater variance in model prediction over k
cross-validation “folds” of the original data

• Essentially, cross-validation takes your training data and splits it
up into k different smaller datasets (called folds), applies the
model to k− 1 folds k times, where k− 1 folds are used to train
the model, and the k− 1th fold is used to validate the model.
This is process is done k times such that each fold is used to
train and validate the model
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Cross-Validation17

• Here’s the process illustrated

17https://www.kaggle.com/dansbecker/cross-validation
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Why Cross-Validation?

• Cross-validation ensures your model is not overfit, meaning
that, while accurate (low bias), it will generalize poorly to new
data (i.e. high variance)

• All models face a trade-off between minimizing bias and
increasing variance.

• For example, Fearon and Laitin’s (2003) and Collier and
Hoeffler’s (2004) models of civil war had very low bias, but could
not predict new civil wars in out-of-sample data. The models
were overfit to the data.

• Any model that is overfit to the training data will generalize
poorly to out-of-sample data.
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Bias-Variance Trade-off Visualized18

18http://scott.fortmann-roe.com/docs/BiasVariance.html
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Cross-Validation and Decision Tree Complexity

• Let’s say we wanted to grow a classification tree to predict the
onset of genocide cross-nationally.

• We do the analysis (shown as follows) and get the following
graphical output:
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Cross-Validation and Decision Tree Complexity
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Interpreting a Tree Visually

• The algorithm starts by inducing a single split on the data space,
creating two daughter nodes at the end of each partition branch

• Splits are akin to a yes-no question. Is the value of the variable
less than a certain threshold? If yes, then right, if no, then left.

• Additional partitions are made in the same way, leading to more
breaches and nodes.

• This process continues until a stopping criterion is met (usually
set by the researcher).

• The resulting structure shows the nonlinear and interactive
structure of the tree. Should be interpreted as X1 & X2 & x3 leads
to Y = 0 or Y = 1
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Cross-Validation and Decision Tree Complexity

• We use the caret (short for Classification And REgression
Training) library in R for the training of all machine learning
models

• It has a built-in CV procedure, making CV easy
• It is a wrapper meaning it is a one-stop-shop for nearly every
ML library in R. Nearly every ML algorithm is implementable with
just a few lines of code

• Hopefully you have downloaded it, because of its size and
dependencies, instillation may take a few hours.
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Cross-Validation and Decision Tree Complexity

• First, we need to transform the coding of our DV into a factor
variable which will ease interpretation of our results in caret

• If our DV is a binary (0,1) variable, we can use the following code
to alter it

• The reason we want to transform our DV into a named factor
(classification only!!!) is because our our evaluation metric
which is the ROC curve. Caret will only give us ROC metrics if the
DV is a named factor.
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Cross-Validation and Decision Tree Complexity

• Next, we want to set up our cross-validation procedure by telling caret
what type of cross-validation procedure we want to use, how many
folds we want, how caret should present the summary of our models,
and some ancillary information (i.e. compute class probabilities for
hold-out samples, save model predictions, and allow parallel
processing)

• There are many different types of cross-validation, some of which are
relevant for various research designs (i.e. time-series forecasting), but
generally 10-fold CV is sufficient for the vast majority of tasks. Become
familiar with the different types of CV procedures on the caret website
(http://topepo.github.io/caret/index.html)
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Cross-Validation and Decision Tree Complexity

• Now we tell caret to grow a decision tree to our data to predict the onset of
genocide/politicide

• And then tell caret to give us the summary of the various cross-validation runs
with the complexity parameter of the tree (the only tunable parameter) varied
according to the Grid command where Grid = (0, 0.05, 0.01)
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Cross-Validation Accuracy Across Tuning Parameters
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From Cross-Validation to Out-of-Sample Prediction

• Cross-validation accuracy can still be misleading. Though it
helps avoid overfitting, it does not eliminate this risk, plus the
model is still fit to the entirety of the training data. Remember
Ward et al.’s critique of civil war studies.

• To assess model’s predictive accuracy, we need to test the
model on data the model has not yet seen.

• We do this in machine learning by passing the predictions of the
model made on the test data to our training data.
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From Cross-Validation to Out-of-Sample Prediction

• What this creates is a matrix of predicted probabilities for each
class per observation.
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From Cross-Validation to Out-of-Sample Prediction

• We can use these predicted probabilities to measure the
accuracy of the model in a number of different ways

• Let’s start with something called a “Confusion Matrix”
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Confusion Matrix
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Unpacking Machine Learning Metrics

• There are no p-values and standard errors in machine learning.
Each model can be evaluated according to different metrics, and
some metrics you may want to prioritize over others depending
on your goal.

• In general the major accuracy metrics commonly reported in the
literature as precision, recall, F-1, ROC-AUC, and for
class-imbalanced data - PR-AUC

• What are these things measures of?
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Unpacking Machine Learning Metrics

• Precision: the fraction of relevant instances among retrieved
instances
• truepositives
truepositives+falsepositives

• Recall: the fraction of relevant instances retrieved from the total
number of possible positive instances
• truepositives
truepositives+falsenegatives

• F-1 Score or F-measure: the harmonic mean of precision and
recall
• 2 · precision·recall

precision+recall
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Unpacking Machine Learning Metrics

• If your goal is simply accurate detection of events of interest (i.e.
civil war onsets), maximize precision

• If your goal is to accurately predict civil war onsets in “at risk”
countries, maximize recall

• If your goal is to build an accurate classifier that can effectively
predict civil war onsets while minimizing false positives and
false negatives, maximize F-1

• There is an inherent trade-off for precision and recall, you
cannot maximize both
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Unpacking Machine Learning Metrics

• Precision, recall, and F-1 are point estimates. You can bootstrap
confidence intervals around these estimates, but since its
simulated data, these CI’s generally aren’t reported.

• The number of instances predicted in the Confusion Martix,
further, depends on a cut off of 0.50 for positive prediction.

• Often, however, we are interested in a range of predictions
across a range of possible thresholds. Rarely is a country at 50%
risk for civil war onset

• ROC curves are a way to visualize this range of predictions
across all probability thresholds. The AUC (Area Under the
Curve) gives the probability that a classifier will assign a higher
predicted probability to a true positive than a true negative
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ROC Curves

• AUC values for ROC range (theoretically) from 0-1
• Typically, values are only relevant from 0.5-1
• An AUC of 0.50 represents a random guess for each observation,
while 1 represents perfect prediction of all observations

• Graphically, the closer to the upper-left corner the curve is, the
better the model

• Use the aptly named ROCR library to draw your ROC plots
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Unpacking Machine Learning Metrics
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Class-Imbalanced Data and Accuracy Metrics

• Let’s assume some data where the prevalence of negatives (0s)
is 100 times that of positives (1s)
• Not uncommon: fraud detection, most political violence

problems
• You put a decision tree to the data, and viola! 98% accuracy!
• But looking at the data, 99% of all observations simply belong to
one class. Your classifier is doing a good job of minimizing false
positives, but it cannot predict a single true positive!

• Often, the majority class (0s) are substantively uninteresting.
Who cares if you predict that France won’t experience a civil
war? We already knew that!

• This is a problem of rare events, and it plagues ML just as much
as standard regression
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Class-Imbalanced Data and Accuracy Metrics

• When dealing with class-imbalanced data, refrain from relying
on ROC curves

• Use instead F-1 scores and the Precision-Recall curve
• Like the ROC curve, PR Curve has an AUC value
• AUC PR ranges from a baseline of pos. cases

N to 1 and is
interpreted as the percentage of positive cases correctly
predicted by the model

• ROCR will draw PR Cuves too.
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Summing Up CART

• CART grows a single tree to the data
• Variables are selected to partition the data by the algorithm in
order to minimize misclassification error

• Optimal complexity of the tree is determined by cross-validation
• Accuracy of CART is assessed in out-of-sample data by various
metrics
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Comparing CART to Logistic Regression for Predicting Genocide

• Let’s construct a logistic
regression classifier in caret

• Syntax is still the same as a
normal glm

• Is it more accurate than
CART?
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Comparing CART to Logistic Regression for Predicting Genocide

• AUC-ROCTree = 0.866, AUC-ROClogit = .916 - all on testing data
• In this case, we would prefer the logistic regression over the
tree. AUC is higher.
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Introducing Ensembles of Trees:
Random Forests



From CART to Random Forests

• Because of the way CART partitions data, it is an exceptionally
low-bias algorithm: it tends to do well in most tasks.

• Due to the ability of the three to capture nonlinearities and
interactions between variables

• Imagine now that the tree selected some other variable for
inducing a split on the data

• If another variable was chosen to induce a split, the
interpretation of the tree could easily be different.

• In high-dimensional data, there’s lots of variables to choose
from

78



From CART to Random Forests

• Because the structure of a tree depends heavily on the
variables selected, trees are high-variance (noisy) predictors.

• Random Forests utilizes the inherent variance of trees to reduce
model variance even further.

• Random Forests does this by growing an ensemble of N decision
(regression) trees to the data instead of just one tree.

• The process by which Random Forests grows this ensemble of
trees is known as bagging, short for bootstrap aggregation.
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Introducing the Bootstrap

• The bootstrap is a method for estimating the properties of a
statistical estimator (i.e. its predictive accuracy) by measuring
those properties when sampling for an approximating
distribution with replacement.

• One could bootstrap confidence intervals for a typical
regression model by bootstrapping the model using repeated
resamples of individual observations. Especially helpful in
small samples, and in Bayesian statistical models

• The bootsrap is useful for estimating the distribution of a
statistic since it does not rely on normality (i.e. z-scores,
t-scores) to produce the distribution.
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Introducing the Bootstrap

• Assume a simple coin flipping experiment.
• Assume further, we have forgotten the binomial theorem and
need to estimate the probability of observing heads based on
10 tries

• Let the t-score of the mean equal x̄ = 1
10 (x1 + x2 + · · ·+ x10)

• Instead, taking the bootstrap, we same (with replacement) from
the data.

• X∗1 = (x2, x1, x5, x8, x2, x4, x9, x3, x6, x10)
• Then take µX∗1 to compute the bootstrap estimated sample mean
• Repeat this process N times to repeatedly resample the sample
mean from the data to arrive at a distribution of population
mean.
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Introducing the Bootstrap
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Bagging for Random Forests

• Bagging works by selecting a random sample of observations
i1, i2 · · · , in and features X1, X2, · · · , Xn

• The algorithm then grows a tree to the bootstrap selected
observations and features.

• N trees are grown in this fashion, where N is a hyper-parameter
set in advance. Trees are i.i.d. and uncorrelated.

• Then, observations NOT used to grow a tree are dropped down
each tree and classified as they would be in CART (i.e. according
to the partitions in the data space).

• These out of bag OOB observations are used to assess
classification accuracy according to majority vote across all
trees in the forest (classification) or simple arithmetic average
(regression)
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Random Forests Visualized
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Random Forests Algorithm
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Random Forest: Prediction

• Random Forests is one of the most consistently powerful
machine learning models outside of deep-learning.

• Random Forests are particularly well suited to the analysis of
comparative historical data common in CP and IR
• Benefits most when data are highly non-linear and contain

substantial interactions
• Two main prediction metrics: accuracy and the Gini Coefficient
(node impurity, misclassification error)
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Random Forests: Prediction

• Prediction is performed internally by Random Forest
• Because Random Forests grows a forest of uncorrelated
decision (regression) trees, and uses OOB observations to
generated predicted probabilities, both cross-validation and
prediction are performed internally (on the training data)

• Out-of-sample predictions are performed as with CART (i.e.
passing predictions in training data to new data)
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Random Forest: Prediction

• Variable Importance and Partial Dependence Plots
• Variable importance is calculated according to the Gini
Coefficient (traditionally)

• Gini is a measure of node impurity at end of forest growing
procedure. Since classification is determined by majority vote
among trees, obs. can be misclassified.

• Gini Coefficient ranges from [0,1] where 0 equals completely
homogeneous and 1 a completely heterogeneous node. For this
metric, lower Gini is better (i.e. more accurate).
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Random Forest: Prediction

• For Regression:
• Accuracy is measured by ŷ = y (traditionally RMSE)
• For regression, the average ŷi is taken for each yi and used as
the prediction of yi.
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Random Forests: Inference

• For inference, Random Forests calculates the mean decrease in
Gini for each feacture Xi for all trees in which Xi was NOT
selected to grow a classification tree.

• Measure the decrease in predictive accuracy when Xi is ablated
from the overall model. If Xi is an important predictor, it will
have a larger mean decrease in Gini score if removed from the
model (since lower Gini is more accurate)

• Compute mean decrease in Gini for all features across all trees
the the forest. Then plot the results.
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Random Forests: Inference
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Random Forests: Inference

• Partial Dependence Plots
• PD Plots show the estimated change in the fraction of votes
among trees for class 0 or class 1 across the entire forest, across
the range of each feature.

• Allows for a visual inspect of non-linearities, threshold effects,
and other data characteristics which can aid in inferential
analysis from Random Forest

• Keep in mind, PD plots are for the training data only.
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Random Forests: Inference
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Application: Predicting Civil War
Onset



Predicting Civil War Onset

• Go to and download the R code for this walk-through
• Also download the two datasets we will be using: SambanisImp
and data full

• Both should be saved in .csv format
• We will walk through this code together to predict civil war
onset using logistic regression and Random Forests.

• We will produce various plots which can be used to calibrate the
differences between models.
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Application: Predicting Genocide



A Less-Guided Tutorial

• Using thecaret library, I want you to implement the following
models to predict civil war onset using the same data
• The Elastic Net
• K-nearest neighbors (k=5, 10, 15, 20)
• Boosted decision trees
• Random Forests
• A single-layer feed-forward neural network

• Using ROC plots and Confusion Matrices, determine which
model is the most accurate in predicting onsets of civil war in
the test dataset

• Use the caret githib website
http://topepo.github.io/caret/index.html to find
instructions on hyperparameter tuning and how to run the
various models.
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